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Course Grade
You have to prepare the assigned exercises. In total you have to 
prepare and mark at least 50% of all exercises. A sheet will be posted in 
front of my door and I will then randomly call students to present their 
work. Just writing down results is not enough! If you can not explain 
what you have done, you will loose 10% of the whole course. If you are 
caught again, you will loose another 20%.

Exercises: A maximum of 5 points per exercise presented can be 
reached.

Homework due 18.01.2005: 10 points.

Midterm, 30.11.2005, 12-14, HS 2: 40 points.

Final, 25.01.2006, 12-14, HS 2: 50 points.

To pass the course you need at least 50 points in total and you have to 
mark at least 50% of all exercises!
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Syllabus
Part 1 - Single-period random cash flows

Stocks (incl. empirical features of returns)
Mean-variance portfolio theory
Utility theory
“Capital Asset Pricing Model” (incl. performance measurement)
Factor models (incl. “Arbitrage Pricing Theory”) 

Part 2 - Multi-period deterministic cash flows
Fixed income securities (incl. credit and market risk)
Floating rate notes

Part 3 - Derivative securities
Forwards
Futures
Options
Swaps

Midterm
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Literature

First Part:
Investment Science, David Luenberger, Oxford University 
Press

Second Part:
Options, Futures, and Other Derivatives, John Hull, 6th 
edition, Prentice Hall
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Overview

Financial markets and the firm

Players in financial markets

Products traded on financial markets

Classification of financial markets

Pricing

Introduction to financial markets
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Financial markets and the firm

Source: Admati (2002)

Introduction to financial markets



8

Players in financial markets
Borrowers: need funds

Lenders / investors: wish to invest funds

Hedgers: want to reduce risk

Speculators: are willing to take risk

Arbitrageurs: lock in profits by exploiting market inefficiencies
Arbitrage opportunity / profit: riskless profit with zero initial investment

Arbitrage strategy: buy cheap and sell expensive

Financial Intermediaries (FI)

Introduction to financial markets
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Players in financial markets: FI
… matching borrowers and lenders / investors

Ex-post information asymmetry between potential lenders and a risk 
neutral entrepreneur and costly monitoring FI (commercial 
banks) are optimal (least costly alternative) given a “high” number of 
lenders (see Diamond (1984))

Other FI
Investment banks: help companies to obtain funding directly from 
lenders

Brokers: match investors wishing to trade with each other

Market makers: have the commitment to buy and sell from or to 
investors

Introduction to financial markets
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Products traded on financial markets

Bonds / FI securities (deterministic CF stream): e.g. 
classification according to issuer: government bonds and 
corporate bonds

Shares (random CFs): common stock and preferred stock

Derivatives: forwards, futures, swaps and options

Currencies / foreign exchange (FX)

Commodities

Introduction to financial markets
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Classification of financial markets

… according to types of markets / traded products:
bond market, stock market, derivatives market, FX market, 
commodities market

… according to investor’s horizon: money market (spot 
market) vs. capital market (future market)

Issuance vs. trading of securities: primary market vs. 
secondary market

… according to the trading system: auction market, dealer 
market and hybrid systems (… combination of auction and 
dealer market)

Introduction to financial markets
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Pricing

Supply and demand price and quantity in an 
equilibrium

Introduction to financial markets
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Pricing

What determines the price at which investors are willing to 
trade?

Expectations about future cash flows

Timing of these cash flows

Riskiness of these cash flows

Present value of future CFs

Valuation axioms
Investors prefer more to less

Investors are risk averse

Money has a time value

Investors are rational

Introduction to financial markets
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Pricing

Returns for different asset classes in Switzerland

Source: Spremann (2002)

Introduction to financial markets
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Overview
Important stock markets

Types of stocks

Types of trades

Computing returns

Empirical features of returns

Additional literature
Haugen, R. A., Modern Investment Theory, 5th edition, 2001. Relevant 
chapter: 2.
Grinblatt, M. and Titman, S., Financial Markets and Corporate Strategy, 2nd 
edition, 2002. Relevant chapter: 4.
Bleymüller, J., Gehlert, G., and Gülicher, H., Statistik im Studium der
Wirtschaftswissenschaften, 10th edition, 1996. Relevant chapters: 3 and 
15.

Single-period random cash flows: Stocks
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Important stock markets

Market capitalisation in million USD.    Source: 

Exchange End 1990 End 1995 End 2000

NYSE 2 692 123 5 654 815 11 534 613
Nasdaq 310 800 1 159 940 3 597 086
Japan (Tokyo) 2 928 534 3 545 307 3 157 222
London 850 012 1 346 641 2 612 230
Euronext Paris 311 687 499 990 1 446 634
Deutsche Börse 355 311 577 365 1 270 243
Switzerland 157 635 398 088 792 316
Toronto 241 924 366 345 770 116
Italy 148 766 209 522 768 363
Euronext Amsterdam 119 825 286 651 640 456

Helsinki 22 721 44 137 293 635
Vienna 26 320 32 513 29 935
Ljubljana - 297 3 100

Single-period random cash flows: Stocks
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Types of stocks
Common stock

… residual claim on the earnings of the firm

Common stockholders can expect to receive their income as

- (common) dividends and/or

- capital gains

In general, firms that pay out only a small fraction of earnings as common 
dividends can be expected to grow faster than firms that pay out a larger 
fraction

Preferred stocks
… mixture between fixed and variable income security

Preferred stocks are usually perpetual securities having no maturity date, 
although there are exceptions (however, preferred stocks are usually 
callable)

Cumulative versus noncumulative preferred stock

Single-period random cash flows: Stocks
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Types of trades

Classification on the basis of the execution price
Market order: executed at the best available price
Limit order: executed at a price at least as advantageous as a 
stated price (if the trade can’t be completed at that price, it is 
delayed until it is possible to execute it under those conditions)
Stop loss order: sell if the price falls to a specified level

Classification on the basis of allowable time for 
completion

Good until canceled: remains indefinitely
Good until date: remains valid until a prespecified date
Good for day / day order: must be executed by the end or the 
day or it is canceled
Fill or kill order: must be executed immediately or it is canceled

Single-period random cash flows: Stocks
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Types of trades
Long position: owning an asset (e.g. 100 OMV shares)

Short position / short selling
Borrow shares from someone (the owner) usually through a broker, i.e. 
taking a short position
Sell (short) these shares, say for x
Pay dividends to the owner of the shares
Buy shares back, say for y
Return the shares borrowed, i.e. closing out the short position
Profit / loss = x - y - dividends paid

If the owner wants to sell her shares the broker will simply borrow them 
from some other costumer. However, if there are too many short sales and 
not enough costumers from whom to borrow shares, the broker may fail to 
execute the trade (“short squeeze”). In a short squeeze the broker has 
the right to force us to close out our short position.

Single-period random cash flows: Stocks
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Computing returns

Simple returns, discrete compounding

Log returns, continuous compounding

Relation between simple and log returns
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Single-period random cash flows: Stocks
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Computing returns

Multi-period simple returns

Multi-period log returns
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Single-period random cash flows: Stocks
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Empirical features of returns

Simple and log returns cannot be distinguished in such graphs

Erratic (“white noise”), strongly oscillating behavior of returns around the 
more or less constant mean (“stationary process” i.p. “mean 
reverting”)

Variance / volatility (standard deviation) is not constant over time 
(“heteroskedasticity”) i.p. we have periods of different length with 
approximately the same degree of variation (“volatility clustering”)

Single-period random cash flows: Stocks
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Empirical features of returns

Usually returns aren’t normal distributed!

- Skewness ≠ 0 

- Kurtosis ≠ 3, usually kurtosis > 3 (“leptokurtic”, i.e. the distribution is 
more strongly concentrated around the mean than the normal and 
assigns correspondingly higher probabilities to extreme values; fat 
tails)

Prices aren’t lognormal distributed!

Single-period random cash flows: Stocks



24

Overview

Properties of portfolios
Return

Risk

Diversification

Minimum variance and efficient set
Combination lines

Markowitz

Tobin

Additional literature
Haugen, R. A., Modern Investment Theory, 5th edition, 2001. 
Relevant chapters: 4 and 5.

Single-period random cash flows: Mean-variance portfolio theory
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Properties of portfolios: return

Multiple-asset portfolio

xj = Dollar amount in of security J bought (or sold short) / total
equity investment in the portfolio

… portfolio return is weighted average of individual 
securities’ returns

Weights are fractions of individual securities in total portfolio value

Weights can be positive (long position) or negative (short position)

Weights must add to 1

Expected value of a random variable
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Single-period random cash flows: Mean-variance portfolio theory
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Properties of portfolios: risk
We quantify risk in terms of statistical measures, conventionally this is 
done using the variance / standard deviation (volatility)

Variance of a random variable

Covariance and correlation of two random variables

Variance of a weighted sum
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Single-period random cash flows: Mean-variance portfolio theory
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Properties of portfolios: risk

Multiple-asset portfolio
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Single-period random cash flows: Mean-variance portfolio theory
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Examples

An investor has € 1000. Hearing from an investment 
opportunity with an expected rate of return of 24%, she 
sells short another security with an expected return of 5% 
for € 4000 and invests all his money in the other security. 
What is the expected rate of return on the portfolio?

Given are two uncorrelated securities: Stock A with 
E(r)=12%, SD(r)=8% and stock B with E(r)=2%, 
SD(r)=10%. Calculate the expected rate of return and 
standard deviation for a portfolio of € 15000 long in A and €
5000 short in B.

Single-period random cash flows: Mean-variance portfolio theory
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Properties of portfolios: diversification

Diversification: strategy designed to reduce risk by 
spreading the portfolio across many assets

Unique risk / unsystematic risk / diversifiable risk / 
idiosyncratic risk: risk factors affecting only that firm
Market risk / systematic risk: economy-wide sources of risk that 
affect the overall stock market

Single-period random cash flows: Mean-variance portfolio theory

0
5 10 15

Number of Securities

Po
rt

fo
lio

 s
ta

nd
ar

d 
de

vi
at

io
n

Market risk

Unique
risk



30

Properties of portfolios: diversification

Naive diversification: portfolio with n assets, each asset 
with weight 1/n

Example (2 years of recent weekly data): naive portfolios of 
Austrian stocks

Single-period random cash flows: Mean-variance portfolio theory

Boehler Lenzing Mayr MK Erste EVN Return # SD
100.00   0.033     1 0.219     
50.00     50.00     0.106     2 0.145     
33.33     33.33     33.33     0.117     3 0.145     
25.00     25.00     25.00     25.00     0.153     4 0.135     
20.00     20.00     20.00     20.00     20.00     0.140     5 0.121     
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Minimum variance and efficient set

A better method for diversification
Find out the portfolio weights that minimize the portfolio variance 
for a given expected portfolio return

For any two assets, plotting return and standard deviation for all 
feasible portfolio weights yields the combination line for these 
assets

Assume the following expected returns and standard 
deviations for two uncorrelated securities:

Single-period random cash flows: Mean-variance portfolio theory
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E(r) 0.10   0.04   
SD(r) 0.05   0.10   

Security
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Minimum variance and efficient set

Combination line

Single-period random cash flows: Mean-variance portfolio theory
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Minimum variance and efficient set

The case of perfect positive correlation

Single-period random cash flows: Mean-variance portfolio theory
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Minimum variance and efficient set

The case of perfect negative correlation

Single-period random cash flows: Mean-variance portfolio theory
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Minimum variance and efficient set

Spectrum of combination lines

Single-period random cash flows: Mean-variance portfolio theory
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Single-period random cash flows: Mean-variance portfolio theory

Minimum variance and efficient set
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Given a particular level of expected rate of return, the 
portfolio on the minimum variance set (“bullet”) has the 
lowest standard deviation (or variance) achievable with the 
available population of stocks

The portfolio with the lowest possible level of standard 
deviation is called global minimum variance portfolio 
(MVP), it divides the bullet in two halfs

The top half of the “bullet” is called the efficient set / -
frontier (the portfolios in the efficient set have the highest 
attainable expected rate of return for a given level of 
standard deviation)

Single-period random cash flows: Mean-variance portfolio theory

Minimum variance and efficient set
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Minimum variance and efficient set

Finding the efficient set using Lagrange - Markowitz
model: compute the portfolio weights that minimize the 
portfolio variance for a given expected portfolio return

Single-period random cash flows: Mean-variance portfolio theory
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Minimum variance and efficient set

Two Fund Separation Theorem: combinations of 
portfolios on the minimum variance set are again on the 
minimum variance set

Remarks
Once you found any two funds on the efficient set, it is possible to 
create all other mean-variance efficient portfolios from these 2 
funds there is no need for anyone to purchase individual stocks 
separately! 

It suffices to replicate mean and variance, since the prices of 
portfolios with the same mean and the same variance have to be 
the same (law of one price)!

Single-period random cash flows: Mean-variance portfolio theory
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Minimum variance and efficient set

Including a risk-free asset, i.e. include an asset with zero 
variance and zero covariance to all other asst

Single-period random cash flows: Mean-variance portfolio theory
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Minimum variance and efficient set

One Fund Theorem: there is a single risky portfolio F
such that any efficient portfolio can be constructed as a 
combination of F and the risk-free asset.

Single-period random cash flows: Mean-variance portfolio theory



42

Minimum variance and efficient set

Finding the efficient set using Lagrange - Tobin model:
compute the portfolio weights that maximize the angle 
between horizontal axis and the efficient frontier o.e. the tan 
of this angel

Single-period random cash flows: Mean-variance portfolio theory
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Overview

Decisions under uncertainty / Decision criteria

Utility functions
3 (possible) categories

Degree of risk aversion

Some utility functions

Expected value and mean-variance criterion

Expected utility and mean-variance criterion

Single-period random cash flows: Utility theory
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Decisions under uncertainty / Decision criteria

Expected value criterion
St. Petersburg Paradox (Daniel Bernoulli, 1738): Consider the 
following game. 

A fair coin will be tossed repeatedly until heads comes up. If this 
happens in the i-th toss, the lottery yields a money prize of 2i Euros. 
The probability of this outcome is 1/2i. 

How much will an expected value maximizer be willing to pay to 
play this game?

.

Since one would not suppose, at least intuitively, that real-world 
people would be willing to pay an infinite amount of money to play 
this game, the expected value criterion seems to be not appropriate 
to determine the price to play this game!

Single-period random cash flows: Utility theory
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Decisions under uncertainty / Decision criteria

Daniel Bernoulli's solution involved two ideas that have since 
revolutionized economics:

firstly, that people's utility from wealth, u(w), is not linearly related 
to wealth, w, but rather increases at a decreasing rate - the famous 
idea of diminishing marginal utility, u’(w) > 0 and u’’(w) < 0; 
and 

secondly, that a person's valuation of a risky venture is not the 
expected value, E[w], of that venture, but rather the expected 
utility, E[w], from that venture.

(von Neumann-Morgenstern) expected utility 
criterion

Single-period random cash flows: Utility theory
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Decisions under uncertainty / Decision criteria

With only a handful of exceptions, Bernoulli's expected utility 
hypothesis was never really picked up until John von 
Neumann and Oskar Morgenstern‘s (1944) Theory of Games 
and Economic Behavior.

Single-period random cash flows: Utility theory



47

Utility functions: 3 (possible) categories

Strict risk aversion and (weak) risk aversion

Risk neutral

Strict risk loving and (weak) risk loving

Single-period random cash flows: Utility theory
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(Strict) risk aversion
u’ > 0, (u’’ < 0) u’’ ≤ 0 … “(strictly) diminishing marginal utility“

… “Jensen’s (strict) inequality”
Certainty equivalent (<) ≤ E[w]
Risk premium (>) ≥ 0
(strictly) risk averse iff u is (strictly) concave

Risk neutral
u ‘> 0, u’’ = 0 … “constant marginal utility”

Certainty equivalent = E[w]
Risk premium = 0
risk neutral iff u is linear

( )[ ] ( )[ ]( ) ( )[ ] ( )[ ]wEuwuEwEuwuE ≤<

( )[ ] ( )[ ]wEuwuE =

Utility functions: 3 (possible) categories

Single-period random cash flows: Utility theory
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Utility functions: degree of risk aversion
u is unique up to a strictly increasing affine transformation (, i.e. u can 
be replaced by a+bu for any constants a and b>0 without changing the 
preference ordering of u) such a transformation should not change 
the measure of risk aversion!

Arrow-Pratt measure of absolute risk aversion

Risk tolerance

Arrow-Pratt measure of relative risk aversion
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Single-period random cash flows: Utility theory
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Some utility functions
Power utility

Quadratic utility (special case of power utility: for = -1 )

Negative exponential utility

Logarithmic utility

All these utility functions are strictly increasing and strictly concave!
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Single-period random cash flows: Utility theory
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Expected utility and expected value criterion

Obviously the expected value criterion can be reconciled 
with the expected utility approach by using a linear utility 
function!

Recall that a linear utility function is equivalent to assuming risk 
neutrality.

Thus, given risk neutrality (i.e. a linear utility function) the expected 
utility criterion reduces to the expected value criterion.
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Single-period random cash flows: Utility theory
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Expected utility and mean-variance criterion

The mean-variance criterion used in the Markowitz model 
can be reconciled with the expected utility approach in 
either of two ways

using a quadratic utility function, or
assuming normal returns.

Quadratic utility function
Utility reaches a maximum at some wealth level and then declines.
As your wealth level increases, your willingness to take on risk
decreases.

Normal returns
Recall that empirical results reveal that returns aren’t normal 
distributed!

Single-period random cash flows: Utility theory
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Overview

Assumptions

Capital market line (CML)

Security market line (SML)

Critique

Performance measurement

Additional literature
Haugen, R. A., Modern Investment Theory, 5th edition, 2001. 
Relevant chapters: 8 and 11.

Single-period random cash flows: CAPM
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Assumptions
The CAPM was simultaneously and independently discovered by W. 
Sharpe (1964), J. Lintner (1965), and J. Mossin (1966).

Investors can choose on the basis of expected return and 
variance! Recall that this is true if either

portfolio returns are normally distributed or

investors have a quadratic utility function!

All investors agree on the planning horizon and the distributions of 
security returns.

There are no frictions in the capital markets.

Note that the CAPM can be derived without assumptions 2 and 3.

Single-period random cash flows: CAPM
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CML

From the one-fund separation theorem we know that all 
investors choose portfolios which are a combination of 
the tangency portfolio and the risk-free asset.

Single-period random cash flows: CAPM
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CML

The tangency portfolio is the same for all investors 
tangency portfolio = summation of all assets = 

“market portfolio”. It must contain shares of every stock 
in proportion to that stocks’ representation in the entire 
market (i.e. to that stocks’ market capitalization).

Single-period random cash flows: CAPM

Security Shares outstanding Price Capitalization Market weight
Jazz, Inc. 10,000 $6.00 60,000 15%
Classical, Inc. 30,000 $4.00 120,000 30%
Rock, Inc. 40,000 $5.50 220,000 55%

400,000

Market Capitalization (only three assets)
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CML

In equilibrium returns of the assets have to adjust such that 
the market portfolio is efficient! How does this happen?

The return of an asset depends on its initial and its final price.
All investors do have the same ideas about the distribution of the 
final prices (by assumption).
Given some initial prices they solve for the best portfolios in a 
mean-variance sense.
They place orders to acquire their portfolios.
Now the market might clear (demand=supply) or not.
If it does not clear prices have to adjust (hence returns change) 
and investors have to find their new optimal portfolio.
They place orders again.
This procedure is reiterated until the market clears which can only 
happen when the market portfolio is efficient.

Single-period random cash flows: CAPM
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SML

Theorem: If the market is efficient then there exists a 
perfect linear relation between the beta factors for stocks 
and their expected rates of return.

The expected rate of return for a stock is the sum of 

the risk free rate (compensating for the delay in consumption) and

the risk premium for security i (compensating for taking risk):

- risk measure for security i and

- market risk premium.

Single-period random cash flows: CAPM
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SML

Proof:
Consider the following portfolio
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SML
The curve generated by asset i and M cannot cross the capital market line, 
i.p. the curve at α=0 has to be tangent to the CML, i.e.

To prove this we first calculate the derivative:

Now we are able to evaluate this derivative at =0 and set it equal to the 
slope of the CML

Solving for ri yields the desired result!
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SML

1st conclusion

βi … beta of the asset

… expected excess return of asset i

The CAPM says that the expected excess return of any asset is 
proportional to the expected excess return of the market 
portfolio!

Note that the expected return is independent of σi , i.p. two 
assets with the same covariance with the market portfolio 
have the same expected return irrespective of their actual 
“risk”!
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Single-period random cash flows: CAPM
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SML

2nd conclusion

the variance consists of two parts:
- market - / systematic risk and

- unique - / unsystematic - / diversifiable - / idiosyncratic risk.

[ ] iFMiFi rrrr εβ +−+=

Single-period random cash flows: CAPM
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CML and SML

Single-period random cash flows: CAPM
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Critique
Testability of the CAPM: Roll’s critique

If the portfolio that is used for the computation of beta lies on the minimum-variance 
set, then the expected returns have to lie on the SML not necessary that we use 
the efficient market portfolio for the computation of betas (see the proof of the 
SML).
The CAPM states that the market portfolio is efficient. Since it is impossible to 
observe the market portfolio this hypothesis cannot be tested. 

Empirical relevance of the CAPM
Despite Roll’s critique there are still attempts to empirically verify

whether expected returns are a linear function of their betas with a market index and
whether market betas are sufficient to explain the variation of the expected returns.
Fama and French (1992): beta is not even significant!
Fama and French (1992): firm size (significant and negative), book-to-market ratio 
(significant and positive), leverage ratio (significant and either negative or positive), 
and earnings to price ratio (not significant if firm size and book-to-market equity are 
already included).
Fama and French (1993): returns are not only determined by one factor but by 
more.

Single-period random cash flows: CAPM
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Examples

Single-period random cash flows: CAPM
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Examples

Single-period random cash flows: CAPM
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Examples

Single-period random cash flows: CAPM
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Performance measurement

The CAPM is often used as benchmark for portfolio 
performance.

Assumption: Pricing structure in the market is that of 
our standard CAPM!

The fund manager has done well when she beats
the SML (Jensen index, Treynor Index) and / or

the CML (Sharpe ratio, M² measure).

Single-period random cash flows: CAPM - Performance measurement
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Jensen index

Benchmark = SML

Jensen index = expected rate of return on the 
portfolio - what its expected return would be if the 
portfolio were positioned on the SML, i.e. 

Single-period random cash flows: CAPM - Performance measurement
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Jensen index

If the fund has a positive Jensen index, it is positioned 
above the SML, and it is considered to have a good 
performance (and vice versa).

Jensen index is sensitive to the magnitude of the excess 
return captured by the manager.

Jensen index is not sensitive to the number of different 
securities for which a manager captured excess returns.

Single-period random cash flows: CAPM - Performance measurement
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Treynor index

Benchmark = SML

Treynor index = risk premium earned per unit of risk 
taken, i.e.

Single-period random cash flows: CAPM - Performance measurement
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Treynor index

Advantage over the Jensen index: Treynor index takes the 
opportunity to lever into account! Given that we can borrow 
at the risk-free rate we can lever a position in A’ to attain a 
position at A*. A* has the same beta as B’ but it has a 
higher expected rate of return.

The fund with the higher Treynor index is considered to be 
better than the fund with a lower Treynor index.

Treynor index is sensitive to the magnitude of the excess 
return captured by the manager.

Treynor index is not sensitive to the number of different 
securities for which a manager captured excess returns.

Single-period random cash flows: CAPM - Performance measurement
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Sharpe ratio

Benchmark = CML

Sharpe ratio = risk premium earned per unit of risk 
exposure, i.e.

Single-period random cash flows: CAPM - Performance measurement
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Sharpe ratio

If the fund has a higher Sharpe ratio than the market, it is 
positioned above the CML, and it is considered to have a 
good performance, i.e. the fund “outperformed the market”
(and vice versa).

Sharpe ratio is sensitive to the magnitude of the excess 
return captured by the manager.

Sharpe ratio is sensitive to the number of different securities 
for which a manager captured excess returns.

Single-period random cash flows: CAPM - Performance measurement
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M² Measure

Benchmark = CML

M² Measure = risk-free rate of return + risk premium 
earned per unit of risk exposure * vola of the market, 
i.e.

Single-period random cash flows: CAPM - Performance measurement
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M² Measure

M² measure takes the opportunity to lever into account! 
Given that we can borrow at the risk-free rate we can lever 
a position in A to attain a position at A’. A’ has the same 
beta as the market but it has a higher expected rate of 
return.

The fund with the higher M² measure is considered to be 
better than the fund with a lower M² measure.

M² measure is sensitive to the magnitude of the excess 
return captured by the manager.

M² measure is sensitive to the number of different securities 
for which a manager captured excess returns.

Single-period random cash flows: CAPM - Performance measurement
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Overview

Motivation

Single-factor models (SFM)

Multi-factor models (MFM)

Arbitrage Pricing Theory (APT)

Additional literature
Haugen, R. A., Modern Investment Theory, 5th edition, 2001. 
Relevant chapters: 6 and 10.

Single-period random cash flows: Factor models
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Motivation

Estimates of expected returns and covariances between the 
securities compute efficient set

How can one get these estimates?
Sampling from past returns (arithmetic) mean and sample 
covariance

- Advantage: easy and fast

- Disadvantage: sample size sampling error 
BUT sample size probability that series of stock 
returns doesn’t reflect the contemporary character of 
the firm 

Single-period random cash flows: Factor models - Motivation
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Motivation
Factor models

- Risk factors (rate of inflation, growth in industrial 
production, …) induce the stock prices to go up and down 
from period to period

Different stocks respond to movements in the risk factors to 
different degrees different future covariances of return 
between different stocks

- Expected return factors (firm characteristics, e.g. firm 
size, liquidity, …) explanations why some firms produce 
higher returns, on average, than others

Single-period random cash flows: Factor models - Motivation
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Assumption
Security returns are correlated for only one reason, i.p. each security is 
assumed to respond to the pull of a single factor, which is usually 
taken to be the market portfolio!

Implicit assumption: 2 types of events produce the period-to-period 
variability in a stock’s rate of return:

Macro events … affect nearly all firms change in rM change in 
rates of return on individual securities (e.g. unexpected change in the rate 
of inflation, change in the Federal Reserve discount rate, …)

Micro events … affect only individual firms, i.e. they are assumed to 
have no effects on other firms and they have no effect on rM cause the 
appearance of residuals or deviations from the characteristic line; 
residuals of different companies are uncorrelated with each other:

MarketFrAr tJtFFJJtJ =++= 1,,,11,, εβ

Single-period random cash flows: Factor models - SFM

2
11,1,´ ),( FFKFJKJ rrCov σββ=⇒

( ) .0,cov =KJ εε



81

Variance

Total variance of the return on a security

Portfolio variance
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Single-period random cash flows: Factor models - SFM
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SFM variance vs. Markowitz variance

Markowitz formula is perfectly accurate, given the 
accuracy of the covariance estimates. (The Markowitz
model makes no assumptions regarding the process 
generating security returns.)

The SFM assumes the residuals are uncorrelated across 
different companies SFM variance is only an 
approximation of the true variance, it is only as 
accurate as our assumption regarding the residuals!

Single-period random cash flows: Factor models - SFM
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Examples 
Given the following info and the assumption of a SFM, what is the 
covariance between stocks A and B?

Consider a portfolio of stock A and B, where the weight of stock A is 2/3 
and assume the following:

What is the residual variance of the portfolio if the SFM is assumed?

What is the residual variance of the portfolio without the SFM?

Single-period random cash flows: Factor models - SFM
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Example 
Consider a portfolio of stock A and B, where the weight of stock A is 1/2 
and assume the following:

What is the beta coefficient of the portfolio?

Compute the residual variance of the portfolio assuming a SFM model.

Compute the variance of the portfolio assuming a SFM model.

Single-period random cash flows: Factor models - SFM
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Example 
Consider a portfolio of stock A and B, where the weight of stock A is 0,4 
and assume the following:

What are the beta values for stock A and B?

What is the covariance between stock A and B, assuming a SFM model?

What is the true covariance between stock A and B?

What is the beta for the portfolio?

What is the variance of the portfolio, assuming a SFM model?

What is the true variance of the portfolio?

Single-period random cash flows: Factor models - SFM
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Assumption

Security returns are not longer correlated for only one 
reason, i.p. each security is assumed to respond to the 
pull of two or more factors!

tJtFFJtFFJJtJ rrAr ,,22,,11,, ... εββ ++++=

Single-period random cash flows: Factor models - MFM
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Variance

Total variance of the return on a security

Portfolio variance
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Single-period random cash flows: Factor models - MFM
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Example 
A 2-factor model is being employed, one a market factor (M) and the other a 
factor of unexpected changes in the growth of industrial production (g).

Compute the variance of stock A and B.

Compute the market and growth beta for an equally weighted portfolio of stock A 
and B.

Assume you had constructed an equally weighted portfolio of stocks A and B. 
Compute the residual variance and the variance of this portfolio in two ways:

- making the simplifying assumption of the 2-factor model about residual 
covariance and

- without making this assumption.

Single-period random cash flows: Factor models - MFM
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Motivation

Problems associated with the CAPM growing interest in 
alternative valuation models!

Most important alternative = APT; first introduced by Ross 
(1976)

Major advantages over the CAPM
APT needs no specific assumptions about the utility 
functions of the decision maker (investor); i.p. the APT requires 
that bounds be placed on investors’ utility functions, but the bounds 
are less restrictive

The model can be tested empirically

Single-period random cash flows: Factor models - APT
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Assumptions 

Securities’ returns can be described through an index 
or factor model

The implicit assumption that the covariance between factors is equal 
to zero is not a necessary assumption.

Large amounts of securities (many more securities than 
number of factors) and the possibility of short-selling

Single-period random cash flows: Factor models - APT
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Expected return and risk relationship

Given these assumptions we “derive” the approximate 
relationship between expected return and risk under the APT

Suppose a single factor can explain all the covariance that 
exist between stocks, i.e. single-factor APT

What will the relationship between E(rJ) and βJ,F1 look like?

Suppose it looks as follows:

Single-period random cash flows: Factor models - APT
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Expected return and risk relationship
There are an unlimited number of securities along the curved line; six of 
these securities are labeled A, B, C, D, E, and F

Portfolio beta and expected portfolio return are simple weighted averages 
combination lines can be drawn as straight lines passing through the 

points on the graph

Sell E short and use the proceeds to invest in C we can create a zero-
beta portfolio E(rZ’)
Sell E and F short and use the proceeds to invest in C and B we can 
create the same zero-beta portfolio E(rZ’)
We can create E(rZ’) by using as many pairs of stocks as we want, i.p. we 
can use an infinite number of pairs βZ’ is zero by construction and                

portfolio has approximately zero total variance

Construct a portfolio positioned at E(rZ)
Sell short E(rZ) and use the proceeds to invest in E(rZ’) arbitrage 
profit

Single-period random cash flows: Factor models - APT
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Expected return and risk relationship
We’ll all be trying to take advantage of this arbitrage opportunity, selling 
short stocks like D, E, and F while buying stocks such as A, B, and C

- selling short stocks like D, E, and F

prices 

expected rates of return 

- buying stocks such as A, B, and C prices

prices 

expected rates of return 

- The effect of all this will be to “unbend” the line until the 
general relationship is approximately linear

Single-period random cash flows: Factor models - APT
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Important facts
Given factor prices s.t. there exist a linear relationship between the 
betas with reference to the market portfolio and expected rates of return 

CAPM and APT are completely consistent (BUT CAPM is not a 
special case of the APT, since the CAPM assumes nothing about the 
structure of security returns other than that possibly they are normal 
distributed. Normal distributions, however, do not necessarily imply the 
linear factor structure required by the APT).

The APT is completely silent with respect to what the factors stand for! 

Chen, Roll, Ross (1986):
Inflation

Industrial production

Risk premiums

Term structures

Single-period random cash flows: Factor models - APT
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Example
Assume that a 3-factor APT model is appropriate. The expected return on a 
portfolio with zero beta values is 5%. You are interested in an equally weighted 
portfolio of 2 stocks, A and B. You should compute the approximate expected 
return on the portfolio, given the following info.

Single-period random cash flows: Factor models - APT
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Example
Assume a 1-factor APT model having the expected return-beta relationship as 
graphed. Find a portfolio of A and C that would result in a beta of zero. What is 
the expected return on this portfolio?

Single-period random cash flows: Factor models - APT
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Overview

Fixed income (FI) securities

Floating rate notes (FRNs)

Additional literature
Haugen, R. A., Modern Investment Theory, 5th edition, 2001. 
Relevant chapters: 2 and 15.

Multi-period deterministic cash flows
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Overview

Introduction
Equity vs. debt instruments

Definition

Characteristics

Bond Markets

Valuation

Credit risk

Market risk

Multi-period deterministic cash flows: FI securities
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Equity vs. debt instruments

Equity instruments
Residual claim (on the earnings of the firm)

Control in non-default states (equity > 0)

Dividend * (1-corporate tax rate)

Debt instruments
Contracted claim “fixed income securities”

Control in default states (equity < 0)

Tax deductibility of interest

Multi-period deterministic cash flows: FI securities - Introduction
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Definition

Bonds are called fixed income securities, because
a fixed amount, “face value” (FV) / “principal” / “par value”,
is repaid at the date of maturity and

a fixed amount, “coupon” (c) / “interest” is paid periodically.

A bond is a security that obligates the issuer to make 
specified interest and principal payments to the 
holder on specified dates, 

t = 0: bondholder pays the price / present value (P),

0 < t ≤ T: bondholder (ev.) receives coupon payments, and

t = T: bondholder receives the face value.

Multi-period deterministic cash flows: FI securities - Introduction
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Characteristics

The main aspects that can be set in a bond contract:

Face value (FV) / principal / par value: original value 
due at maturity!
It is not the same as the market value!

Coupon (c) / interest: income that investor will receive 
over the life of the issue.

Multi-period deterministic cash flows: FI securities - Introduction



102

Characteristics
Zero-coupon bonds / pure discount bonds: pay no coupons 
prior to maturity and pay the face value at maturity single 
payment at maturity!

Fixed

- (Straight) coupon bonds / bullet bonds: pay a stated 
coupon periodically and pay the face value at maturity

- Consol bonds / perpetual bonds: no maturity date and pay a 
stated coupon periodically they pay only interest

- Annuity bonds: pay a mix of interest and principal for a finite 
amount of time

- Deferred coupon bonds: permit the issuer to avoid coupon 
payments for a certain period of time

Floating “floating rate note” (FRN): coupon is reset 
periodically

Multi-period deterministic cash flows: FI securities - Introduction
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Characteristics

Maturity (T): date when (or time until) the bond expires 
(or matures); maximum length of time the borrower has to 
pay off the principal in full.

Bill / paper / short-term issues: T ≤ 1y

Notes / intermediate-term issues: 1y < T ≤ 10y

Bonds / long-term obligations: T > 10y

Type of ownership
Bearer bond

Registered bond

Multi-period deterministic cash flows: FI securities - Introduction
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Characteristics

Bond covenants / “me first rules”: help to protect 
bondholders from the moral hazard of equity holders!

Asset covenants

- Dividend covenant: restricts the payment of dividends

- Secured / senior bonds: asset backed, e.g. mortgage bonds

- Unsecured bonds

- Subordinated / junior bonds: claim that is subordinated to 
other debt instruments; lowest priority

Sinking fund covenants: bond must be paid off systematically 
over its life, i.e. a part of the principal must be repaid before T, e.g. 
annuity bond

Multi-period deterministic cash flows: FI securities - Introduction
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Characteristics
Financial ratio covenants: if a target ratio is not met the firm is 
technically in default, e.g. working capital (= current A - current L) 
> x, interest coverage ratio (= earnings / interest) > x, …

Financing covenants: description of the amount of additional 
debt the firm may issue and the claims to assets that this additional 
debt might have in the event of default

Multi-period deterministic cash flows: FI securities - Introduction
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Characteristics
Embedded options: options included in bond contracts

NOTE: The embedded options have a price!

Freely …:  option can be exercised at any time (notification period)

Deferred … provision: option cannot be exercised during a certain period

Callable bond: allows the issuing firm to retire the bonds before T by 
paying a pre-specified price (lower price)

Putable bond: allows the bondholder to sell the bond back to the issuer 
(higher price); e.g. poison put: allows the bondholder to sell the bond back 
to the issuer in the case that someone obtains more than 50% of the 
company

Convertible

Exchangeability

Embedded currency option

Multi-period deterministic cash flows: FI securities - Introduction
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Bond markets

Domestic bond market
Most issues are listed at an exchange
BUT most trading takes place over-the-counter (OTC)

Foreign bond market
Foreign bonds = issued by foreign borrowers in a nation’s 
domestic market and denominated in the nation’s domestic 
currency
Yankee-, Samurai-, Brady-Bonds, …

Eurobond market
Eurobonds = denominated in a particular currency and 
issued simultaneously in the markets of several nations
Traded exclusively over-the-counter (OTC)

Multi-period deterministic cash flows: FI securities - Introduction
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Bond markets

The 5 most important markets for bonds

Total value [billion USD], 1997

United States 11,218

Japan 4,173

Germany 2,943

Italy 1,271

United Kingdom     856

Multi-period deterministic cash flows: FI securities - Introduction
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Bond markets

Distribution of bonds according to type of issuer, 1997

US [%] Japan [%] BRD [%]

Government 25 43 23

Federal (agency), 25 16 3

government related

State, local, municipal 10 6 15

Bank 18 38

Corporate 26 10 0,1

International 14 7 21

Multi-period deterministic cash flows: FI securities - Introduction
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Valuation

… simply compute the present value of the promised 
future CF streams (effective periodic interest rate = 
simple p.a. interest rate / compounding period)

Multi-period deterministic cash flows: FI securities - Valuation
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Examples

What is the current market price of a US Treasury strip that 
matures in exactly 5 years and has a face value of $ 1000, 
using an annual interest rate of R=7.5 % (annual 
compounding)? 

What is the annual interest rate on a US Treasury strip that 
pays $1000 in exactly 7 years and is currently selling for $ 
591.11 (annual compounding)?

What is the market price of a US Treasury bond that has a 
coupon rate of 9% p.a., a face value of $1000, and matures 
exactly 2 years from today if the interest rate is 10% 
compounded annually?

Multi-period deterministic cash flows: FI securities - Valuation
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Examples
What is the market price of a US Treasury bond that has a coupon rate 
of 9% p.a., a face value of $1000 and matures exactly 2 years from 
today if the interest rate is 10% p.a. compounded semi-annually?

What is the market price of a US Treasury bond that has a coupon rate 
of 9% p.a., a face value of $1000 and matures exactly 10 years from 
today if the interest rate is 10% p.a. compounded semi-annually?

What is the market price of a consol bond that has a coupon rate of 9% 
p.a. if the interest rate is 10% p.a. compounded semi-annually?
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Multi-period deterministic cash flows: FI securities - Valuation
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Valuation

Yield-to-maturity (y) / internal rate of return (IRR): 
(constant) discount rate that makes the discounted value of 
the promised future CFs equal to the market price of the 
bond (… forecast of the average annual rate of return, 
under the assumption that the coupon can be reinvested at 
this rate)

Zero rate (zt) / spot rate: internal rate of return of a zero-
coupon bond

1

11

11

0
)1()1()1()1(

zyyearperCFsofnumberandTif

zycif
z

FV
z

c
y

FV
y

cPV

t

T
t

T

t
t

t
T

T

t
t

=⇒==

=⇒=
+

+
+

=
+

+
+

= ∑∑
==

Multi-period deterministic cash flows: FI securities - Valuation
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Quotes

Selling at par: PV = FV

Selling at a discount: PV < FV

Selling at a premium: PV > FV

What can you infer about the relationship of the yield and 
the coupon?

PV = quoted price + accrued interest
Accrued interest = c [p.a.] * time since last c [y]

Time since last c [y] … usually actual/365

Multi-period deterministic cash flows: FI securities - Valuation
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Rating

… expected return on a loan agreed interest rate

Measurement of credit risk: ratings; a bond rating is a 
quality ranking of a specific debt issue

How rating agencies rate the bonds:
2 aspects of credit risk: default probability and expected loss 
in the event of default

Main factors taken into account: macroeconomic data (rule of 
thumb: country rating > bond rating), industry/regulatory 
trends, management quality, operating/financial positions, 
company structure, and issue structure

Multi-period deterministic cash flows: FI securities - Credit risk
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Rating

Rating review: upgrade, downgrade (to BB+ / Ba1 or lower “fallen 
angel”)

Junk bonds / high yield bonds … bonds with a lower rating than 
BBB- / Baa3 (Usually pension funds and other financial institutions 
are not allowed to invest in junk bonds)

1 year 10 years
AAA Aaa 0.00% 1.40%
AA Aa 0.00% 1.29%
A A 0.06% 2.17%

BBB Baa 0.18% 4.34%
BB Ba 1.06% 17.73%
B B 5.20% 29.02%

CCC Caa
CC Ca 

19.79% 45.10%

Cum. default prob.
S&P Moody's Definition

Default

Speculative

Medium Grade

High Grade

Multi-period deterministic cash flows: FI securities - Credit risk
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Market risk

… risk about the uncertainty of interest rate changes
If interest rates rise, the price of bonds will fall

If interest rates fall, the price of bonds will rise

The reaction of long-term bonds is more pronounced than 
the reaction of short-term bonds

Bond prices

-
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Multi-period deterministic cash flows: FI securities - Market risk
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Taylor series expansion

Risk indications for bonds
Taylor series approximate price change, given changes in 
the YTM
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Taylor series expansion
Duration … how sensitive the price is to changes in the 
yield; %-change in the price for a given small change in the 
YTM

Duration for a (straight) coupon / bullet bond

k … number of periods (CFs) per year

P … PV of the bond

if c=0 D=T

if T=1 and k=1 D=T=1

Modified duration
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Taylor series expansion
Convexity

Duration for a (straight) coupon / bullet bond

k … number of periods (CFs) per year

P … PV of the bond

( )

( )yP
y

yP

CX
2

2

∂
∂

=

( ) ( )∑
=

+

⎟
⎠
⎞⎜

⎝
⎛ +

=
T

t

t

Pk
CFPVtt

k
y

CX
1 0

2´2 *
*1*

1

1

Multi-period deterministic cash flows: FI securities - Market risk



121

Overview

Definition

Perfectly indexed FRNs

Multi-period deterministic cash flows: FRNs
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Definition

Coupon is not fixed but floating, i.e. coupon is reset 
periodically

Reference rate: money market rate (LIBOR) or capital 
market rate (CMT); The maturity of the reference rate 
corresponds to the length of the coupon/reset period (… natural 
time lag)

Reset date: in advance (usually)

Additional features: cap (upside limited, e.g. c = min (LIBOR, 
7%)); floor (downside limited, e.g. c = max (LIBOR, 2%)), margin 
(changed by a fixed amount, e.g. c = LIBOR + 50bp)

Multi-period deterministic cash flows: FRNs - Definition
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Perfectly indexed FRNs

Perfectly indexed FRN = a floater indexed to a MMT 
rate with natural time lag which is reset in advance and 
has no additional features
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Examples

Some time ago, a German company issued a EUR 5m FRN 
(at the p.a. EUR LIBOR). Suppose the current conditions are 
as follows:

The note matures in 2,5 years.
The EUR LIBOR rate, set 6 months ago for the current period, is 
6% p.a.
The current six-month EUR LIBOR rate is 5% p.a.

What is the PV of the FRN?

How would you price the FRN from above given that the 
coupon = EUR LIBOR + 10bp?

Multi-period deterministic cash flows: FRNs - Perfectly indexed FRNs



125

Overview
Introduction

Forwards

Futures

Options

Swaps

Additional literature
Sercu, P. and Uppal, R., International Financial Markets and the Firm, 1995. 
Relevant chapters: 1-8 and 10. 
Hull, J.C., Options, Futures, and Other Derivatives, 5th edition, 2002. 
Relevant chapters: 1-4, 6, 8-12, 14, 15, and 19.
Shreve, S.E., Stochastic Calculus for Finance I The Binomial Asset Pricing 
Model, 2004. Relevant chapters: 1 and 2.

Derivative securities
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Definition of derivative securities
A derivative is a contract to buy or sell something in the future, 
namely the underlying.

All contract details (such as the price, the quantity to be bought or 
sold, the maturity, etc.) are fixed at the time you enter the 
contract.

The price of the derivative depends on the underlying.

The underlying can be everything as long as it is clearly defined! 
Examples:

Financial prices: stocks, bonds, stock-indices, exchange rates 

Commodities: oil price, gold, copper, coffee, orange juice concentrate, 
wine, energy, weather

In most cases the underlying is the price of a traded asset!

Derivative securities: Introduction
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Types of derivatives

Forwards

Futures

Options

Swaps

Advanced products
Structured products: combinations of forwards, swaps, and options
Hybrid debt: straight debt with embedded derivative instruments
Exotic options
Real options
…

Derivative securities: Introduction
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Derivatives markets

Over-the-counter markets
non-standardized  products; tailor made contracts

telephone or electronic trading

relative high transaction cost

relative high credit risk/default risk

illiquidity

Exchange-traded markets
standardized products

trading floor (open outcry system) or electronic trading

relative low transaction cost

virtually no credit risk/default risk

liquidity

Derivative securities: Introduction
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Purpose of derivatives

Risk management: to hedge risks

Arbitrage: to lock in arbitrage profits

Speculation

Derivative securities: Introduction
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Overview

Introduction
Definition

Payoffs

Present values

Pricing

Hedging

Problems

Derivative securities: Forwards
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Definition

A forward/outright contract is an agreement for the 
purchase (long position, forward purchase, FP) or sale 
(short position, forward sale, FS) of a prespecified
number of units of the underlying at a certain time in 
the future, T, at a prespecified price (strike 
price/delivery price/forward price), Ft0,T.

Note: Delivery and payment takes place in the future on a 
date stated in the contract, T.

Note: It can be contrasted with a spot contract which is an 
agreement to buy or sell immediately.

OTC

Derivative securities: Forwards - Introduction
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Payoffs

FP … the holder is obligated to buy an asset worth ST
for Ft0,T :

FS … the holder is obligated to sell an asset worth ST
for Ft0,T : 

TtTT FSCF ,0−=

TTtT SFCF −= ,0

Derivative securities: Forwards - Introduction
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Present value for a FP
Suppose you want to close out a FP at time t, t0<t<T.

At time t : close out a FP by adding a FS for the same T

At time T:
Payoff from FP: ST-Ft0,T

You will buy one unit of the underlying and pay Ft0,T for it.
Payoff from FS: Ft,T-ST

You will sell one unit of the underlying and receive Ft,T for it.
Sum of the payoffs: ST-Ft0,T+Ft,T-ST=Ft,T-Ft0,T

Discounting with the risk-free rate gives the present value for a FP:

Note:

( ) rT
TtTtt eFFPV −−= ,0,

( )
TTtTTtTTT

rT
TtTtt

CFFSFFPV
eFFPV

=−=−=

=−= −

,0,0,

,0,00 0

Derivative securities: Forwards - Introduction



134

Present value for a FS
Suppose you want to close out a FS at time t, t0<t<T.

At time t : Close out a FS by adding a FP for the same T.

At time T:
Payoff from FP: ST-Ft,T

You will buy one unit of the underlying and pay Ft,T for it.
Payoff from FS: Ft0,T-ST

You will sell one unit of the underlying and receive Ft0,T for it.
Sum of the payoffs: ST-Ft,T+Ft0,T-ST=Ft0,T-Ft,T

Discounting with the risk-free rate gives the present value for a FS:

Note:

( ) rT
TtTtt eFFPV −−= ,,0

( )
TTTtTTTtT

rT
TtTtt

CFSFFFPV
eFFPV

=−=−=

=−= −

,0,,0

,0,00 0

Derivative securities: Forwards - Introduction
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Arbitrage free forward price

Underlying = non-dividend paying security

… no arbitrage condition

Suppose                  arbitrage strategy
t=t0

- Long forward: 0
- Sell security short: +St0

- Invest at r : -St0

- Sum: 0

t=T
- Fulfill forward: -Ft0,T

- Receive from investment: +St0erT

- Sum = Arbitrage profit: St0erT-Ft0,T

rT
tTt eSF 0,0 =

rT
tTt eSF 0,0 <

Derivative securities: Forwards - Pricing
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Arbitrage free forward price

Suppose                  arbitrage strategy
t=t0

- Short forward: 0
- Buy security: -St0

- Credit at r : +St0

- Sum: 0

t=T
- Fulfill forward: +Ft0,T

- Credit repayment: -St0erT

- Sum = Arbitrage profit: Ft0,T-St0erT

rT
tTt eSF 0,0 >

Derivative securities: Forwards - Pricing
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Arbitrage free forward price
Underlying = dividend-paying security

… no arbitrage condition

Z … present value of the dividends during T

Suppose                              arbitrage strategy
t=t0

- Long forward: 0
- Sell security short: +St0

- Invest Z at r : -Z
- Invest St0 -Z at r : -(St0-Z)
- Sum: 0

t=T
- Fulfill forward: -Ft0,T

- Receive from investment: +(St0-Z)erT

- Sum = Arbitrage profit: (St0-Z)erT-Ft0,T

( ) rT
tTt eZSF −= 0,0

( ) rT
tTt eZSF −< 0,0

Derivative securities: Forwards - Pricing
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Arbitrage free forward price

Suppose                        arbitrage strategy
t=t0

- Short forward: 0
- Buy security: -St0

- Credit at r: +St0

- Sum: 0

t=T
- Fulfill forward: +Ft0,T

- Credit repayment: -St0erT

- Dividends received and invested at r: +ZerT

- Sum = Arbitrage profit: Ft0,T-(St0-Z)erT

( ) rT
tTt eZSF −> 0,0

Derivative securities: Forwards - Pricing
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Arbitrage free forward price
Underlying = commodity that is an investment asset, e.g. gold

… no arbitrage condition

L … present value of the storage costs incurred during T

Suppose                              arbitrage strategy
t=t0

- Long forward: 0
- Sell security short: +St0

- Invest St0 +L at r : -(St0+L)
- Sum: 0

t=T
- Fulfill forward: -Ft0,T

- Receive from investment: +(St0+L)erT

- Sum = Arbitrage profit: (St0+L)erT-Ft0,T

( ) rT
tTt eLSF += 0,0

( ) rT
tTt eLSF +< 0,0

Derivative securities: Forwards - Pricing
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Arbitrage free forward price

Suppose                        arbitrage strategy
t=t0

- Short forward: 0
- Buy security: -St0

- Pay storage costs: -L
- Credit at r: +St0+L
- Sum: 0

t=T
- Fulfill forward: +Ft0,T

- Credit repayment: -(St0+L)erT

- Sum = Arbitrage profit: Ft0,T-(St0+L)erT

( ) rT
tTt eLSF +> 0,0

Derivative securities: Forwards - Pricing
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Arbitrage free forward price

Underlying = commodity that is an consumption 
asset, e.g. oil

… no arbitrage condition

L … present value of the storage costs incurred during T

≤ … Individuals who keep consumption assets will probably 
do so because of its consumption value - not because of its 
value as an investment! Therefore, we are unable to exploit 
the arbitrage opportunity given                       which would 
require that we sell the underlying!

( ) rT
tTt eLSF +≤ 0,0

( ) rT
tTt eLSF +< 0,0

Derivative securities: Forwards - Pricing
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Arbitrage free forward prices
General principle:                    … no arbitrage condition

c … cost of carry 
Non-dividend paying security: 

c=r
Dividend paying security: 

c=r-(1/T)ln(St0/(St0-Z))
Dividend paying security, where the dividend is expressed as a proportion q of the 
spot price:

c=r-q
Commodity (investment asset):

c=r-(1/T)ln(St0/(St0+L))
Commodity (investment asset), where the storage costs are expressed as a 
proportion u of the spot price:

c=u+r
Currency, where the income r* is the foreign currency risk-free interest rate:

c=r-r*

cT
tTt eSF 0,0 =

Derivative securities: Forwards - Pricing
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Arbitrage free forward price
Underlying = exchange rate

… no arbitrage condition
Spot price/rate, St

- direct / right quote: #HC / 1FC 

• … price of one unit of FC in units of HC

• … buying or selling always refers to the currency in the 
denominator

• EUR / ice-cream = 2 price of 1 ice-cream is 2 EUR

- indirect / inverse quote: FC / HC

( )Trr
tTt eSF

*

0,0
−=

Derivative securities: Forwards - Pricing
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Arbitrage free forward price
What does the FX-forward rate depend upon?

No arbitrage condition: INTEREST RATE PARITY

HCt

HCT FCT

FCt

(1+r*t,T)(1+rt,T) 1/(1+r*t,T)1/(1+rt,T)

1/St

1/Ft T

St

Ft T

( )

( )
( )Trr

tTtTrr
tTt

rT
Tt
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t

Trr
tTtt
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rT
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eSFSeFe
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Hedging examples
Hedging a future FC inflow

Hedging a future FC outflow

Derivative securities: Forwards - Hedging
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Problems
Main problems associated with forwards (due to OTC)

non-standardized products; tailor made contracts
relative high transaction cost
relative high credit risk/default risk
illiquidity

Would also be nice to have
relative low transaction cost
relative low credit risk/default risk
liquid secondary market
futures
These attributes of futures are achieved through standardization since 
standardization enables securities to be traded on an exchange
BUT
standardization also involves some difficulties especially w.r.t. hedging.

Derivative securities: Forwards - Problems
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Problems
Banks try to minimize the credit risk/default risk by

only dealing with well-known banks or corporations which have excellent 
reputation, “the club”

discouraging speculative positions

credit limits or margin requirements 

issuing short-term contracts only (firms which want to hedge long-term 
positions must roll-over short-term contracts, but a rolled-over forward 
contract is an imperfect substitute for a long-term contract)

Derivative securities: Forwards - Problems
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Overview

Introduction
Definition

Clearing corporation

Marking to market

Pricing

Hedging

Forwards vs. futures

Derivative securities: Futures
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Definition

Futures are similar to forwards except the following 
features

standardized products (what?, where?, when?, how?)

typically involve daily settlement (“marking to market”)

final settlement by offset (i.e. no physical delivery)

Derivative securities: Futures - Introduction
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Clearing corporation
Clearing corporation (CC)

Futures are not initiated between individuals or corporations BUT each party has 
contract with a CC, i.e.

long short
A B
C CC D
E F
… open interest = 3 contracts … # of outstanding contracts

Note: if A defaults B isn’t concerned; the only credit risk / default risk A faces is that
the CC defaults virtually no credit risk
The CC effectively clears, i.e. if A buys from B (like above) and then some time later 
sells to Z the CC cancels out both of A’s contracts, i.e.

long short
A A
C CC B
E D
Z F
… open interest = 3 contracts … # of outstanding contracts

CC levies a small tax on all transactions … insurance against default

Derivative securities: Futures - Introduction
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Marking to market

Daily settlement (“marking to market”) … reduce the 
credit risk / default risk for the CC

Marking to market … daily payment of the undiscounted change in 
the futures price; CFs arising from marking to market

- long positon: CFt = ft,T - ft-1,T

total gain/loss = fT,T - ft0,T = ST - ft0,T

- short positon: CFt = ft-1,T - ft,T
total CF = ft0,T - fT,T = ft0,T - ST

ft … settlement price: generally closing price or average price 
around the closing price

Gain from defaulting for an investor = avoidance of a one-day 
marking-to-market outflow

Derivative securities: Futures - Introduction
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Marking to market

Margin Account … to avoid the cost and inconvenience of 
frequent but small payments from marking to market, losses 
are allowed to accumulate to certain levels

initial margin

maintenance margin … minimum amount of margin required

margint = margint-1 + CFt

if margint < maintence margin margin call

- initial margin must be restored, i.e. initial margin - margint = 
“variation margint”

- if ignored: gainuntil t / lossuntil t and margint

if margint > initial margin withdrawing possible s.t. margint ≥
initial margin

Derivative securities: Futures - Introduction
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Example

On Wednesday, an investor goes long a future on HKD 1 
million at an exercise price of TWD/HKD 3.3764. The 
contract expires on Tuesday next week. 

daily settlement prices TWK/HKD
Wed: 3.3776; Thu: 3.3421; Fri: 3.3990; Mon: 3.3428; Tue: 3.3290 

initial margin = TWD 200000

maintenance margin = TWD 150000

The investor withdraws money from the margin account whenever 
she is entitled to do so

At the close of each day, show the position of the margin account, 
the size of the margin call if required, and withdrawals of the 
investor. Also calculate the final settlement.

Derivative securities: Futures - Introduction
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Future prices vs. forward prices

Marking to market creates interest rate risk
F=f if r = constant / deterministic
f < F if ρ(underlying price, r) < 0

- if underlying inc. r dec. and gain; gains are invested at low 
rates

- if underlying dec. r inc. and loss; losses have to be financed 
at high rates

f > F if ρ(underlying price, r) > 0
- if underlying inc. r inc. and gain; gains are invested at high 

rates
- if underlying dec. r dec. and loss; losses can be financed at 

low rates
In practice, differences are very small forward and futures 
prices are usually assumed to be the same!

Derivative securities: Futures - Pricing
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Hedging

… some problems due to standardization
maturity mismatch … “delta hedge”

underlying mismatch … “cross hedge”

maturity mismatch and underlying mismatch … “delta-cross hedge”

contract size mismatch

some risk will remain ... “basis risk”

Derivative securities: Futures - Hedging
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Forwards vs. futures

Futures
standardized products; 
exchange-traded

relative low transaction cost

relative low credit risk/default 
risk

liquid

ruin risk: cash flow problems 
may result from marking to 
market

interest rate risk due marking-
to-market

limited choice of contracts

usually short maturities

usually no (physical) delivery 
just cash settlement (often prior 
to maturity)

better for speculating

Forwards
non-standardized products; 
tailor made contracts; OTC

relative high transaction cost

relative high credit risk/default 
risk

illiquid

not applicable

not applicable

tailor made contracts

longer maturities possible

usually delivery or cash 
settlement

better for hedging

Derivative securities: Futures - Forwards vs. futures
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Overview

Introduction

Some profit/loss diagrams

Pricing
No-arbitrage conditions beside the PCP

Factors affecting option prices

Discrete time: Binomial asset pricing model

Continuous time: Black-Scholes model

Some exotic options

Option markets

Derivative securities: Options
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What is an option?

The purchase of an options contract gives the buyer the 
right to buy (call options contract) or sell (put 
options contract) some other asset at a prespecified time 
and a prespecified price.

The underlying asset can be any asset with a well-defined 
value or price. Examples are options on individual stocks, 
indices, futures contracts, bonds, currencies, other options, 
etc.

Derivative securities: Options - Introduction
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Difference betw. options and futures (forwards)

An options contract does not represent an obligation to 
buy or sell the underlying asset, unlike the case of futures 
(forwards) contracts.

As a result of that, the value of an option can be 
positive, or at worst, zero.

Derivative securities: Options - Introduction
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“American” vs. “European” options

“European” style options provide the right to exercise 
only at the expiration date.

“American” options give the right to buy or sell the 
underlying asset at any time on or before a prespecified
future data (called the expiration date); “early exercise”.

Derivative securities: Options - Introduction
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Long call option

Payoff and profit/loss diagram

Profit / loss table

Algebraic representation

Derivative securities: Options - Introduction
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Example: Hedging a FX-Loan

Profit/loss diagram

+ =

Derivative securities: Options - Introduction
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Example: Hedging a FX-Loan

Profit/loss diagram

+ =

Derivative securities: Options - Introduction
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Remarks
These simple profit/loss representations do not take into account:

The time value of money. In other words, the fact that the cost of the call 
is paid prior to the payoff at expiration.
Taxes.
Transaction costs.

In/at/out of the money
At the money: Current price of underlying equals exercise price.
In the money: Immediate exercise would result in a profit.
Out of the money: Immediate exercise would result in a loss.

Intrinsic value of an option = profit / loss if exercised immediately

Time value: There is always a positive probability of a favorable 
underlying price movement.

Option value = Intrinsic value of an option + time value

Derivative securities: Options - Introduction
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Short call option

Payoff and profit/loss diagram

Profit / loss table

Algebraic representation

Derivative securities: Options - Introduction
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Short call option

The payoff and profit/loss diagram for the writer is exactly 
the opposite to that of the buyer.

Writing a call is a contingent obligation for which the 
writer is compensated by the sale price of the call.

Derivative securities: Options - Introduction
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Remarks

The payoffs to the writer and buyer of an option are 
perfectly negatively correlated; i.e., the options-related 
wealth positions of the buyer and writer always sum to zero.

For this reason, options are not included in the market 
portfolio “M”, as they are in zero net supply.

Derivative securities: Options - Introduction
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Long put option

Payoff and profit/loss diagram

Profit / loss table

Algebraic representation

Derivative securities: Options - Introduction
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Short put option

Payoff and profit/loss diagram

Profit / loss table

Algebraic representation

Derivative securities: Options - Introduction
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Short put option

The payoff or profit/loss diagram for the writer is exactly the 
opposite to that of the buyer.

Writing a put is a contingent obligation for which the 
writer is compensated by the sale price of the put.

Derivative securities: Options - Introduction
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Portfolio insurance

The return relationship of a put and the underlying asset are 
fundamentally different. This makes puts ideal instruments 
for insuring against price declines.

Example
1 long share of stock, 1 long put on the stock with exercise price E

Payoff table of a hedge

The portfolio’s value is thus bounded below by the exercise price E.

Derivative securities: Options - Introduction
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Portfolio insurance

Thus, portfolio insurance is a strategy that offers “insurance 
policy” on an asset. It works similarly to the previous 
example.

Portfolio insurance offers a “floor” on the value of the 
portfolio.

Derivative securities: Options - Introduction
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Example: Portfolio insurance

Suppose a portfolio has a value of $100.

Suppose a put option with exercise price (strike price) of 
$100 has a sensitivity (delta) to changes in the value of the 
portfolio of -0.6. In other words, the option’s value swings 
$0.60 for every dollar change in portfolio value, but in an 
opposite direction.

Suppose the stock price falls by 2%.

What is the profit/loss on the portfolio that includes the put?

Derivative securities: Options - Introduction
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Profit / loss table

In other words, including the put in the portfolio limits the 
loss to $0.80 for every $2.00 lost on the “uninsured”
portfolio.

Derivative securities: Options - Introduction

Example: Portfolio insurance
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Example: Synthetic portfolio insurance

We now that the delta of the put option is -0.6

Buy delta shares, i.e. sell 60% of the shares value

Put proceeds in T-bills

Profit / loss table

Derivative securities: Options - Introduction
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Portfolio insurance: The “collar”
Portfolio insurance is used to ensure against declines in 
asset values. Sometimes, we can reduce the cost of such 
insurance by simultaneously writing calls.

This is the idea of the “collar”.

A collar is a portfolio of
The underlying asset
A written call on the asset with exercise price EC

A purchased put on the asset with exercise price EP

The idea is to sell off some of the upward potential (in the 
form of the written call) in order to reduce the insurance 
costs (the price of the put), i.e. EC > EP.

Derivative securities: Options - Introduction
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Portfolio insurance: The “collar”

Payoff diagram

Payoff table

Derivative securities: Options - Introduction
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Put-call parity

Consider the following portfolio:
Buy 1 share of the stock

Write one call on the stock with exercise price E

Buy one put on the stock with the same exercise price E

Borrow PV(E), where E is the common exercise price of the put and 
the call.

Derivative securities: Options - Introduction



179

Put-call parity
Price and payoff table

Note
No matter what happens at expiration, this portfolio pays E.
In the absence of arbitrage opportunities, it must sell today for a 
price equal to PV(E).

Derivative securities: Options - Introduction
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Put-call parity
- Ct + Pt + St = PVt (E) or

Ct = Pt + St - PVt (E) or

Pt = Ct - St + PVt (E)

Note:

PT - CT =  PVT (E) - ST

PT - CT =  E - ST

=  Ft0,T - ST

=  CFT of a FS and therefore by the LAW OF ONE PRICE:

Pt - Ct =  PVt of a FS, which is given by ( ) rT
TtTtt eFFPV −−= ,,0

Derivative securities: Options - Introduction
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Put-call parity

Payoff diagram

Derivative securities: Options - Introduction
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Bull spread

with calls: long 1 call, E=E1 and short 1 call, E=E2, where 
E2>E1

Profit/loss diagram

Derivative securities: Options - Some profit/loss diagrams
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Bull spread

with puts: long 1 put, E=E1 and short 1 put, E=E2, where 
E2>E1

Profit/loss diagram

Derivative securities: Options - Some profit/loss diagrams
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Bear spread

with calls: short 1 call, E=E1 and long 1 call, E=E2, where 
E2>E1

Profit/loss diagram

Derivative securities: Options - Some profit/loss diagrams
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Bear spread

with puts: short 1 put, E=E1 and long 1 put, E=E2, where 
E2>E1

Profit/loss diagram

Derivative securities: Options - Some profit/loss diagrams
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Butterfly spread

with calls: long 1 call, E=E1; short 2 calls, E=E2 and long 1 
call, E=E3, where E3>E2=0.5(E1+E3)>E1

Profit/loss diagram

Derivative securities: Options - Some profit/loss diagrams
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Butterfly spread

with puts: long 1 put, E=E1; short 2 puts, E=E2 and long 1 
put, E=E3, where E3>E2=0.5(E1+E3)>E1

Profit/loss diagram

Derivative securities: Options - Some profit/loss diagrams
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Straddle

long: long 1 call, E and long 1 put, E

Profit/loss diagram

Derivative securities: Options - Some profit/loss diagrams
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Straddle

short: short 1 call, E and short 1 put, E

Profit/loss diagram

Derivative securities: Options - Some profit/loss diagrams
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Strangle

long: long 1 put, E1 and long 1 call, E2, where E2>E1

Profit/loss diagram

Derivative securities: Options - Some profit/loss diagrams
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Strangle

short: short 1 put, E1 and short 1 call, E2, where E2>E1

Profit/loss diagram

Derivative securities: Options - Some profit/loss diagrams
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Outline

No-arbitrage conditions beside the PCP

Factors affecting option prices

Discrete time: Binomial asset pricing model

Continuous time: Black-Scholes model

Derivative securities: Options - Pricing
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European call

max(0, St-Ee-rT) ≤ c ≤ St … NAC

Suppose 0 < c < St-Ee-rT arbitrage strategy

Derivative securities: Options - No-arbitrage conditions
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European call

Suppose c > St > 0 arbitrage strategy

Derivative securities: Options - No-arbitrage conditions
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European put

max(0, Ee-rT-St) ≤ p ≤ Ee-rT … NAC

Suppose 0 < p < Ee-rT-St arbitrage strategy

Derivative securities: Options - No-arbitrage conditions
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European put

Suppose p > Ee-rT > 0 arbitrage strategy

Derivative securities: Options - No-arbitrage conditions
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Factors affecting option prices

Derivative securities: Options - Factors affecting option prices
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One-period binomial model

Time 0: S0 … price per share, a positive quantity known at 
time zero.

Time 1: The price per share will be one of two positive 
values: S1(H) or S1(T).

Assume: 
Probability of head (stock price increase), p, is positive.
Probability of tail (stock price decrease), q = (1-p), is also positive.

The outcome of the coin toss, and hence S1(H) or S1(T), is 
known at time one but not at time zero, it is random.

u = S1(H) / S0 > 0  and  d = S1(T) / S0 > 0

Derivative securities: Options - Binomial asset pricing model
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One-period binomial model

Derivative securities: Options - Binomial asset pricing model
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One-period binomial model
To rule out arbitrage we must assume: 0 < d < 1+r < u.

Positivity of stock prices d > 0.

If d ≥ 1+r Arbitrage strategy: 

- Time 0: Borrow from the money market in order to buy the stock. 

- Time 1: Even in the worst case, the value of the stock will be higher 
than or equal to the value of the money market debt and has a 
positive probability of being strictly higher since u > d ≥ 1+r.

If u ≤ 1+r Arbitrage strategy: 

- Time 0: Sell the stock short and invest the proceeds in the money 
market. 

- Time 1: Even in the best case, the cost canceling the short position 
will be less than or equal to the value of the money market 
investment and has a positive probability of being strictly less since d 
< u ≤ 1+r.

Derivative securities: Options - Binomial asset pricing model
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The replicating portfolio
Under the binomial model, a derivative will assume at most two values 
we need at most two other securities to match its payoff exactly!

The arbitrage pricing theory approach to the derivative-pricing problem is to 
replicate the derivative by trading in the stock and the money market.

The initial wealth needed to set up the replicating portfolio is the no-
arbitrage price of the derivative at time zero!

Derivate price in the market > no-arbitrage price Arbitrage strategy: 
- Time 0: Sell the derivative short, set up the replicating portfolio and invest the 

rest in the money market.
- Time 1: Regardless of how the stock price evolved, we have a zero net position 

in the derivative and the money market investment. 
Derivate price in the market < no-arbitrage price Arbitrage strategy:

- Time 0: Buy the derivative, set up the reverse of the replicating portfolio and 
invest the rest in the money market.

- Time 1: Regardless of how the stock price evolved, we have a zero net position 
in the derivative and the money market investment.

Derivative securities: Options - Binomial asset pricing model
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The replicating portfolio

Time 0: V0 … no-arbitrage price of the derivative, to be 
determined.

Time 1: The payoff of the derivative will be one of two 
values: V1(H) or V1(T).

Derivative securities: Options - Binomial asset pricing model
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The replicating portfolio

Consider a portfolio of stock (number of stocks = ) and 
money market account (amount invested at the risk-free 
rate = B).

If the portfolio is to replicate the payoff to the derivative, it 
must be that 0 S1 + (1+r) B0 = V1, i.p.

(i) 0 S1(H) + (1+r) B0 = V1(H), i.e. 0 uS0 + (1+r) B0 = V1(H) and

(ii) 0 S1(T) + (1+r) B0 = V1(T), i.e. 0 dS0 + (1+r) B0 = V1(T).

… Two equations, two unknowns ( 0 and B0).

Note: B0 = X0 - 0 S0 We begin with wealth X0 and buy 0 shares of 
stock at time zero, leaving us with a cash position B0 = X0 - 0 S0. 
The value of our portfolio of stock and money market account at 
time one is given by the wealth equations (i) and (ii).

Derivative securities: Options - Binomial asset pricing model
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The replicating portfolio

From the wealth equations (i) and (ii) we get:

Recall: The initial wealth, X0, needed to set up the 
replicating portfolio is the no-arbitrage price of the 
derivative at time zero. Thus,

B0 = X0 - 0 S0 X0 = 0 S0 + B0 = V0, by no-arbitrage!

Derivative securities: Options - Binomial asset pricing model
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The replicating portfolio

Let us now consider an alternative way to solve the wealth 
equations (i) and (ii). 

We rewrite the wealth equation as follows: 

Derivative securities: Options - Binomial asset pricing model
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The replicating portfolio

… Two equations, two unknowns ( 0 and X0).

Multiply (i’) by a number p’, (ii’) by a number q’ = 1-p’ and 
add them to get
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The replicating portfolio

If we choose p’ so that

where the last equality comes from the no-arbitrage 
argument.

We can solve for p’ and q’ directly from the equation (*) in 
the form

Derivative securities: Options - Binomial asset pricing model
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The replicating portfolio
The replication argument depends on several assumptions:

Short positions are allowed (unlimited credit).
Shares of stock can be subdivided for sale or purchase.
Essentially satisfied because option pricing and hedging (replication) 
typically involve lots of options.
The interest rate for investing is the same as the interest rate for 
borrowing; we use a constant risk-free rate which is assumed to be the 
same for all maturities.
Is close to being true for large institutions.
The purchase price of stock is the same as the selling price, i.e. 
there is zero bid-ask spread.
Is not satisfied in practice.
No transaction costs, taxes, …
At any time, the stock can take only two possible values in the next 
period.
In the Black-Scholes model, this assumption is replaced by the assumption 
that the stock price is a geometric Brownian motion. Empirical studies of 
stock price returns have consistently shown this not to be the case!

Derivative securities: Options - Binomial asset pricing model



209

Risk-neutral probabilities

Properties of p’ and q’
p’ and q’ are positive: 

due to the no-arbitrage assumption, 0 < d < 1+r < u. 

p’ and q’ sum to one: 

p’ + q’ = p’ + 1 - p’ = 1.

0 < p’ < 1:

We can regard p’ and q’ as probablities of head and tail, 
respectively.
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Risk-neutral probabilities
We can rewrite (*) and (**) as

where E’(.) denotes the expected value under p’ and q’.
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Risk-neutral probabilities

Note that p’ and q’ satisfy (*),

the average rate of growth of the stock under p’ and q’ is 
exactly the same as the rate of growth of the money market 
account. 

If this would be the case then investors must be neutral 
about risk - they do not require compensation for assuming 
it (risk averse), nor are they willing to pay for it (risk 
loving). This is simply not the case p’ and q’ are not the 
actual probabilities, which we call p and q, but rather so-
called risk-neutral probabilities!

Derivative securities: Options - Binomial asset pricing model
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Note

The valuation seems not to take into account the expected 
rate of return of the underlying asset!

This appears counterintuitive, but the probability of an up or down 
move is already incorporated in today‘s stock price.
It turns out, that the expected return needs not to be taken into 
account elsewhere.

The actual probabilities of up and down moves are 
irrelevant. What matters is the size of the two possible 
moves (the values u and d).

I.e. the prices of derivative securities depend on the set of 
possible stock price paths but not on how probable these 
paths are.

Derivative securities: Options - Binomial asset pricing model
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Example: (European or American) call
Consider a traded asset (stock) with current price S = 50USD, a call 
(European or American) with E = 55USD, T = 1year, r = 10%p.a., u 
= 1.3 and d = 0.77. Determine the price of the derivative?

Derivative securities: Options - Binomial asset pricing model
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Example: (European or American) put
Consider a traded asset (stock) with current price S = 50USD, a put 
(European or American) with E = 55USD, T = 1year, r = 10%p.a., u 
= 1.3 and d = 0.77. Determine the price of the derivative?

Derivative securities: Options - Binomial asset pricing model
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Example: Arbitrage possibility
Consider the example on the previous page but suppose now that you 
observe the price of the put to be 6USD! What would you conclude?

Derivative securities: Options - Binomial asset pricing model
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Multi-period binomial asset pricing model

Derivative securities: Options - Binomial asset pricing model
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Multi-period binomial asset pricing model

After a coin toss, the agent can readjust her replicating 
portfolio. Thus, in order to determine the no-arbitrage price 
of the derivative at time zero we can proceed via backward 
induction, i.e. we determine the no-arbitrage price of 
the derivative for each sub-tree starting at the very 
right and work “backward” to the very left.

Additional assumption as compared to the one-period case:
u and d are constant: Since u and d measure the volatility of the 
underlying, we implicitly assume that this volatility is constant! 

This is empirically not justified!

After a coin toss, the agent can readjust her replicating 
portfolio at no cost.

Derivative securities: Options - Binomial asset pricing model
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Example: European put
Consider a traded asset (stock) with current price S = 100USD, an 
European put with E = 100USD, T = 1year, 3 periods, r = 5%p.a., 
S1(H) = 125USD and S1(T) = 80USD. Determine the price of the 
derivative?

Derivative securities: Options - Binomial asset pricing model
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American options
Recall: “American” options give the right to buy or sell the underlying 
asset at any time on or before a prespecified future data (called the 
expiration date); “early exercise”.

This implies that we need at least a 2-step binomial asset pricing model 
to value the possibility of early exercise.

Note: In a 1-step binomial asset pricing model American and European 
options will have the same value.

Derivative securities: Options - Binomial asset pricing model
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American options

The procedure for valuing an American option is as follows:
At every node also calculate the intrinsic value of the American
option, IV(.).

Recall: Intrinsic value of an option = profit / loss if exercised 
immediately.

If IV(.) > V(.) Early exercise, i.e. we realize the intrinsic value. 
Since everybody agrees with the fact that the IV(.) > V(.) nobody 
will be willing to sell the option for less than its immediate exercise 
value therefore we continue our calculation with IV(.) instead of 
V(.).
If IV(.) < V(.) Early exercise is not desirable. We continue our 
calculation without changes!

Derivative securities: Options - Binomial asset pricing model
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Example: American put
Consider a traded asset (stock) with current price S = 100USD, an 
American put with E = 100USD, T = 1year, 3 periods, r = 5%p.a., 
S1(H) = 125USD and S1(T) = 80USD. Determine the price of the 
derivative?

Derivative securities: Options - Binomial asset pricing model
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Example: Lookback option
Consider a traded asset (stock) with current price S = 4USD, u = 2, and 
d = 0.5, 3 periods and r = 2.5%p.p. The Lookback option pays off V3 

= max0≤n≤3 Sn - S3. Determine the price of the derivative?

Derivative securities: Options - Binomial asset pricing model
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Multi-period binomial asset pricing model

If we choose              ,                    and a continuous 

interest rate convention then as the number of periods goes 
to ∞, the probability distribution for the value of the 
underlying asset approaches a normal distribution.

The binomial model approximates the Black-Scholes model 
as t 0, the price of a call computed using the binomial 
model will approximate the Black-Scholes price.

teu Λ= σ te
u

d Λ−== σ1
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Completeness
The binomial asset pricing in this section is called complete because 
every derivative can be replicated by trading in the underlying stock 
and the money market. 

In a complete market, every security has a unique price. 

Many markets are incomplete, and prices cannot be determined 
from no-arbitrage considerations alone. Utility based models are 
still the only theoretically defensible way of treating such 
markets.

Derivative securities: Options - Binomial asset pricing model
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Example
Example

Take any q1 such that the risk-neutral probabilities are between 0 and 
1. Two possible choices for the risk-neutral measures would be (0,1,0) 
or (2/3,0,1/3).

S =100
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( )

( )

12

2121

~
2
31~

1.1
90~~1110~120~

100

1

qq

qqqq
r

SE
S Tq

⋅−=⇒

⋅−−+⋅+⋅
=

+
=

Derivative securities: Options - Binomial asset pricing model



226

The evolvement of r and S over time
In the Black-Scholes option pricing model (1973), there are two securities, a 
money market account which offers a constant risk-free interest rate 
and a stock (just like in the binomial asset pricing model).

The money market account follows a deterministic process such as:

where r is the riskless interest rate, dt is a small time step, and dBt is called the 
increment of B over the time interval [t,t+dt].

The stock follows a geometric Brownian motion (GBM) such as:

where µ is the constant mean of S, dt is a small time step, σ is the constant 
standard deviation of S, dSt (dWt) is called the increment of S (W) over the time 
interval [t,t+dt], and W is a Wiener process. For any fixed time interval 
[t,t+dt] the increment dSt (dWt) is a stochastic variable!

t
t

t dWdt
S

dS σµ +=
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B
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t
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Wiener process
Norbert Wiener, 1920: Wt is a Wiener process, i.p. Wt is a random (stochastic) 
real-valued continuous function (process) on [0, ) such that:

Wt=0 = 0,
dWt = Wt+dt - Wt ~ N(0,dt), and
if the intervals [t1, t2] and [u1, u2] do not overlap, then the increments dWt = Wt2 -
Wt1 and dWu = Wu2 - Wu1 are independent!

One realization of a Wiener process

Some implied properties
W is nowhere differentiable due to its jaggedness which is a result of the 
independent increments

Since each increment of W is normal distributed W itself is normal distributed

Derivative securities: Options - Black-Scholes model
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Geometric Brownian motion

One realization of a geometric Brownian motion
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Geometric Brownian motion

Note: The probability of what S does next depend only on the current 
state, t. This is called Markov property.

In other words: In a Markov process future movements in a variable 
depend only on where we are, not the history of how we got where we 
are.

Over a small time interval [t,t+dt] a GBM has the following economic 
interpretation:

stock return = mean return + volatility * normal random 
disturbance

large volatility large random fluctuations
small volatility small random fluctuations
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History
Robert Brown, 1828: Experimental study of the motion of particles 
suspended in a liquid (Albert Einstein, 1905 and Marian von 
Smoluchowski, 1906). The motion (stochastic process) became known as 
Brownian motion.

Louis Bachelier, Théorie de la Speculation, 1900: S follows a 
Brownian motion such as:

BUT a Brownian motion and herefore S, may become negative.

This difficulty is easily eliminated by assuming that the logarithm of S, 
rather than S itself, follows a Brownian motion. In this case we 
say that S follows a geometric Brownian motion.
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Black-Scholes model: Main ideas
The BS analysis is analogous to the analysis used to value options in the 
binomial asset pricing model.

Consider a portfolio consisting of a position in the option and a position 
in the underlying stock.

The derivative is defined in terms of the underlying the derivative 
price should be highly correlated with the underlying price.

In any short period of time, the price of a call option is perfectly positively 
correlated with the price of the underlying stock and the price of a put option is 
perfectly negatively correlated with the price of the underlying stock.

We should be able to balance derivative against underlying in our 
portfolio, so as to cancel the randomness. In other words, we should be 
able to choose the weights of the portfolio such that we get a riskless
portfolio.

Derivative securities: Options - Black-Scholes model
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Suppose, for example, that at a particular point in time we know that the delta of 
a call is given by 0.4 (∆c=dc/dS=0.4). 

The riskless portfolio would consist of 
a long position in 0.4 share and
a short position in 1 call option.

The gain or loss from the stock position always offsets the gain or loss from the 
option position so that the overall value of the portfolio at the end of the short 
period of time is known with certainty. 

I.e. ∆c is the number of units of the underlying one should hold for each 
option shorted if one wants to obtain a riskless portfolio.

This is exactly the same reasoning as in the binomial asset pricing model! 
However, there is one important difference between the binomial asset pricing 
model and the BS model. In the BS model, the position that is set up is 
riskless for only a very short period of time.

Derivative securities: Options - Black-Scholes model
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To remain riskless it must be frequently adjusted or 
“rebalanced”. In particular, we would have to rebalance continuously! 

However, we will obtain a riskless rate of return on our portfolio 
which by absence of arbitrage is equal to our riskless interest 
rate from the money market account.

This is the key element in the BS arguments and leads to their 
pricing formulas.

Derivative securities: Options - Black-Scholes model
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The riskless-portfolio argument depends on basically the same 
assumptions as the replicating portfolio argument in the binomial asset 
pricing model, except that we assume here that the stock price 
follows a geometric Brownian motion. (This implies continuous 
trading is assumed to be possible.)

Empirical studies of stock price returns have consistently shown this not 
to be the case!

Derivative securities: Options - Black-Scholes model
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Black-Scholes formula

where N(x) is cumulative standard normal distribution at x. In other 
words, it is the probability that a variable with a standard normal 
distribution, i.e. N(0,1), will be less than x.

Note: The equations for the call price and the put price are of course 
related via the put-call parity, i.e. via pt = ct - St + PVt(E).
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The volatility is the only parameter which can not be directly 
observed in the market We can either use

historical estimation OR

the “implied volatility”.

Implied volatility

One can use the BS formula to calculate the volatility given all
other observed values (including the observed market price of the 
option). This volatility is then called the “implied volatility”.

Unfortunately, there exists no closed form solution for the implied 
volatility, i.e. we cannot rewrite the Black-Scholes pricing formula 
to get an expression for the implied volatility. However, one can 
use numerical procedures (e.g. Monte Carlo simulations) that 
provide solutions.

Derivative securities: Options - Black-Scholes model

Black-Scholes model: Pricing formula
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The result is the following “volatility smile”:

Note that we assumed a constant volatility which is obviously an
incorrect assumption.

Derivative securities: Options - Black-Scholes model

Black-Scholes model: Pricing formula
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Unfortunately no exact analytic formulae for the value of 
American calls and puts have been produced. There are however 
numerical procedures (e.g. Monte Carlo simulations) that provide
solutions.

Note: Since the American call price equals the European call price 
for a non-dividend paying stock, the BS formula also gives the price 
of an American call on a non-dividend paying stock. (Remember: Early 
exercise of an American call on a non-dividend paying stock is never 
optimal.)

Derivative securities: Options - Black-Scholes model

Black-Scholes model: Pricing formula
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Black-Scholes price of a call and a put with E = 100, T = 1y, r = 10% 
p.a. and σ = 20% p.a..

Properties of the Black-Scholes prices

Derivative securities: Options - Black-Scholes model
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Properties of the Black-Scholes prices
Call

When S becomes very large, a call option is almost certain to be exercised. It 
then becomes very similar to a forward purchase contract with delivery price E.

Expect the call price to be

This is in fact the call price given by the BS formula since when S becomes very 
large, both d1 and d2 become very large and since N(x) is the probability that a 
variable with a standard normal distribution, i.e. N(0,1), will be less than x, N(d1) 
and N(d2) are both close to one.

Put
When S becomes very large, a European put option is almost certain to be not 
exercised. 

Expect the European put price to be 0.

This is in fact the European put price given by the BS formula since when S becomes 
very large, both d1 and d2 become very large and since N(x) is the probability that a 
variable with a standard normal distribution, i.e. N(0,1), will be less than x, N(-d1) 
and N(-d2) are both close to zero.

.rT
tt EeSc −−=
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Call
When S becomes very small, a call option is almost certain to be not 
exercised. 

Expect the call price to be 0.

This is in fact the call price given by the BS formula since when S becomes very 
small, both d1 and d2 become very small and since N(x) is the probability that a 
variable with a standard normal distribution, i.e. N(0,1), will be less than x, N(d1) 
and N(d2) are both close to zero.

Put
When S becomes very small, a European put option is almost certain to be 
exercised. It then becomes very similar to a forward sale contract with delivery 
price E.

Expect the European put price to be

This is in fact the European put price given by the BS formula since when S becomes 
very small, both d1 and d2 become very small and since N(x) is the probability that a 
variable with a standard normal distribution, i.e. N(0,1), will be less than x, N(-d1) 
and N(-d2) are both close to one.

.t
rT

t SEep −= −
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Call
When σ becomes 0, the stock is virtually riskless, its price will 
grow at rate r to SerT at time T and the payoff from a call option is 
max (ST - E, 0) = max (SerT - E, 0).

Discounting at rate r, the value of the call today is

To show that this is consistent with the BS formula, consider first the case 
where S > Ee-rT. This implies ln(S/E) + rT > 0. As σ tends to zero, d1 and 
d2 tend to + , so that N(d1) and N(d2) tend to 1 and the BS formula 
becomes

Next consider the case where S < Ee-rT. This implies ln(S/E) + rT < 0. As σ
tends to zero, d1 and d2 tend to - , so that N(d1) and N(d2) tend to 0 
and the BS formula yields 0.

( ) ( ).0,max0,max rTrTrT
t EeSESeec −− −=−=

.rT
tt EeSc −−=
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Put
When σ becomes 0, the stock is virtually riskless, its price will grow 
at rate r to SerT at time T and the payoff from an European put 
option is   max (E - ST, 0) = max (E - SerT, 0).

Discounting at rate r, the value of the European put today is

To show that this is consistent with the BS formula, consider first the case 
where Ee-rT > S. This implies ln(S/E) + rT < 0. As σ tends to zero, d1 and 
d2 tend to - , so that N(-d1) and N(-d2) tend to 1 and the BS formula 
becomes

Next consider the case where Ee-rT > S. This implies ln(S/E) + rT > 0. As σ
tends to zero, d1 and d2 tend to + , so that N(-d1) and N(-d2) tend to 0 
and the BS formula yields 0.

( ) ( ).0,max0,max SEeSeEep rTrTrT
t −=−= −−

.t
rT

t SEep −= −
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Greeks
Delta: change of the option price given a change in the 
underlying price.

Black-Scholes delta of a call with E = 100, T = 1y, r = 10% p.a. and σ = 
20% p.a..
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Gamma: change of the delta given a change in the underlying 
price.

Note: If gamma is small, delta changes only very slowly.

Black-Scholes gamma of a call with E = 100, T = 1y, r = 10% p.a. and 
σ = 20% p.a..
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Rho: change of the option price given a change in the “riskless”
interest rate.

Black-Scholes rho of a call with E = 100, T = 1y, r = 10% p.a. and σ = 
20% p.a..
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Theta: change of the option price given a change in t.

In other words, theta measures how fast the value of the option changes 
as time goes by, all other things equal.

Black-Scholes theta of a call with E = 100, T = 1y, r = 10% p.a. and σ = 
20% p.a..
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Vega: change of the option price given a change in the 
volatility.

Black-Scholes vega of a call with E = 100, T = 1y, r = 10% p.a. and σ = 
20% p.a..
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Payoffs of path-independent options
European call and put

American call and put

Bermudan call and put … like American calls and puts but with early 
exercise allowed only on some pre-specified dates

Digital / binary options
Call

Put

“Mixed”

Power options
Call

Put

( ) NnES nn
T ∈−   where,,0max

EST ≥
1
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Payoffs of path-dependent options
Barrier options

Up and out call

Up and in call

Down and out call

Down and in call

( ) 0max  with ,1 ,0max
],0[

SLES LST tTt
>− ≤∈
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Payoffs of path-dependent options
Lookback options

Call

Put

Shout option

Average / Asian option

TtTt SS −∈ ],0[max
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Payoffs of multi-asset options
Basket option

Quanto option

And much, much more.
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Payoffs of options on options
Compound option

Chooser option

And much, much more.
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Overview

Introduction

Interest rate swap

Currency swap

Pricing swaps with forwards

Derivative securities: Swaps
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Definition

A swap is an agreement to exchange cash flows at 
specified future times according to certain specified 
rules.

Derivative securities: Swaps - Introduction
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Interest rate swap

Converting cash flows (investments or liabilities) from

fixed rate to floating rate OR

floating rate to fixed rate

at specified future times.

Interest rate swaps can be valued as the difference between 
the value of a fixed-rate bond and the value of a floating-
rate bond.

Derivative securities: Swaps - Interest rate swap
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Example

An agreement by “Company B” to receive 6-month LIBOR 
and pay a fixed rate of 5% per annum every 6 months for 3 
years on a face value (notional principal) of $100 million.

Cash Flows to company B

Derivative securities: Swaps - Interest rate swap
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Currency swap

Converting cash flows (investments or liabilities) from one 
currency in another currency. The coupon payments may be 
either

fixed rate to floating rate,

floating rate to fixed rate,

fixed rate to fixed rate, OR

floating rate to floating rate

at specified future times.

Currency swaps can be valued as the difference between 2 
bonds.

Derivative securities: Swaps - Currency swap
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Example

An agreement by “Company B” to pay 11% on a FV of 
£10,000,000 and receive 8% on a FV of $15,000,000 every 
year for 5 years.

In an interest rate swap the principal is not exchanged. 
However, in a currency swap the principal is exchanged at 
the beginning and the end of the swap.

Cash Flows to company B

Derivative securities: Swaps - Currency swap
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Pricing swaps with forwards

A swap can be regarded as a convenient way of packaging 
forward contracts.

The interest rate swap in our example consisted of 6 
forward contracts.

The currency swap in our example consisted of a cash 
transaction and 5 forward contracts.

The value of the swap is the sum of the values of the 
forward contracts implied by the swap.

A swap is worth zero to a company initially. However, at a 
future time its value is either positive or negative.

Derivative securities: Swaps - Pricing swaps with forwards


